
Synchronous Thread Management in a

Distributed Operating System's Micro Kernel

Olivier Potonni�ee1, Jean-Bernard Stefani2

1 Alcatel Alsthom Recherche, Route de Nozay, 91460 Marcoussis, France,
2 France Telecom/CNET, 38-40 av. du Gal Leclerc, 92794 Issy Moulineaux Cedex 9,

France

Abstract. This paper describes an experiment in programming part of

an operating system kernel using the Esterel synchronous programming

language. Using a synchronous programming language allows the con-
struction of provable, deterministic reactive systems. The paper describes

and analyzes the small executive realized and the formal veri�cation

of some of its properties. It also presents how multiple interconnected
instances of this executive can be synchronized, yielding a distributed

real-time platform operating under a sparse-time model.

Key Words : Synchronous programming, distributed systems, thread man-
agement, real-time systems, deterministic systems

1 Introduction

Synchronous languages [2] such as Signal [3], Lustre [4], Esterel [5] or Argos [6],
provide a means to program real time systems having a formal description of
their (deterministic) behavior. One potential interesting area of application is
the construction of a real time operating system kernel.

Current operating systems are built using standard languages, which make
it di�cult to formerly verify their behavior. In this paper, for the �rst time to
best of our knowledge, we use a synchronous programming language, Esterel,
to develop a small real time executive corresponding to the thread management
function of the Chorus micro-kernel. We used the Mauto tool [7] to verify prop-
erties of our implementation through bisimulation reductions.

Based on our synchronous executive, we further implemented a ditributed
computational model, originally proposed in the Saturn project [8]. The result-
ing distributed platform realizes a sparse time execution model as proposed by
H. Kopetz [9], where events can only occur in speci�ed intervals of time, thus
simplifying the synchronization of distributed applications.

2 Overview of the prototype

We did not aim to reinvent thread management, but only to investigate a new
way to realize it. We thus reproduced that of the Chorus [10] micro-kernel.



Thread management in Chorus comes with a speci�c scheduler which is preemp-
tive and piority driven : threads having a priority higher than a given threshold
can only be preempted by higher priority threads, while the others may share
time with equal priority threads.

The analysis of an existing thread management is not an easy work : the
documentation presents isolated possible states of a thread, but it misses in-
formation on the combination of those states. The kernel sources are usually
the only way to get precise information on speci�c behavior. This is due to the
large numbers of combined states that a thread can take (hundreds), that can't
be documented and do not directly appear in classical programming languages.
Esterel, being state oriented, provides a much simpler description of those states.

We decomposed Chorus thread management into four di�erent components,
corresponding to the four basic functions involved in thread management, namely
interrupt management, handling of time, thread managementproper, and schedul-
ing. Each of these components corresponds in our prototype to one or more
Esterel module(s). The structure of the prototype, together with the 
ow of
communication between the di�erent components, is shown in �gure 1.

System

Applications

Hardware

Thread

Thread

Thread

Scheduler

Time Interrupt

Fig. 1. Architecture of the synchronous process management

� Interrupt

This component receives interrupt signals from the processor, and redirects
them to the involved components. It contains two Esterel modules : one
launches handlers to treat hardware interrupts, the other redirects software
interrupts (traps) and exceptions to the concerned threads.



� Time

The Time component handles the physical clock interrupt, and timers.
� Scheduler

This component allocates the processor to the threads. It is divided in a
generic module, and an interchangeable speci�c one, that implements the
Chorus scheduling policy.

� Thread

This is the largest component. It manages all possible states that a thread
can take. Whereas each of the previous components was unique in the system,
there is one instance of Thread per thread in the system.
The number of states managed by this component being very large, it is
decomposed in �ve modules : three of them handle states concerning di�erent
kinds of blocked states, and communicate a sub-state to a fourth module,
that deduces if the thread is ready or not to execute. This information is
transmitted to the scheduler. The �fth module handles transitions to and
from system mode.

3 Implementation and veri�cation

The compilation of an Esterel module produces an automaton coded in a set of
C++ classes [12]. We call an instance of the automaton a reactive object. Ideally,
all modules should be compiled together, providing a single object. However, this
is not possible for two reasons :

{ The resulting automaton would be so large that it would not even be possible
to generate it due to a combinatorial explosion of states 3.

{ Esterel does not allow dynamicity (which would require dynamic reconstruc-
tion of the automaton !). Thus the Thread component has to be compiled
separately, so it can be instantiated at run time when new threads are cre-
ated.

The interface of a reactive object provides methods to set input signals
awaited by the automaton, and get output signals that it produces. An out-
put signal can be connected to the input signal of another reactive object, en-
suring synchronous communications between separately compiled modules. This
enables to chain reactive objects, provided that they only have unidirectional
communication, so that an order can be decided for the execution of the reac-
tions 4. We call this composition method synchronous sequencing. Our prototype
has �ve reactive objects, linked by synchronous sequencing.

To execute those objects, it is necessary to have an execution machine, that
will activate each object in the sequencing order, ensuring the synchronous se-
mantic. This leads to the de�nition of a synchronous execution machine, which

3 However, the new version of the Esterel compiler which was not available to us at
the time, resolves this problem, by using a new coding structure for the automaton.

4 Sequencing allows to have loop in the communication graph by introducing a delay

object [12].



performs signal communications inside and at the interface of the thread manage-
ment, and guarantees atomicity of the reactions. This execution machine being
written in classical programming language, it has to be minimum, so that it does
not contain unproven behavior. We adopted the simplest policy to start objects'
activation : a reaction sequence is executed as soon as there is one input signal,
unless there is already one running. There are two concurrent sources of events in
an operating system : threads, invoking system operations or raising exceptions,
and hardware interrupts. A lock mechanism is used to ensure atomicity of the
reaction sequence when concurrent events occur simultaneously.

To certify a program, a formal veri�cation, must be used. This is done with
the Mauto tool [11], that uses a mathematical representation of the automaton,
as a set of labeled transitions. To verify that a situation cannot occur, we de�ne
the abstract actions specifying it. Those actions are described by a sequence of
combinations of input and output signals. Each combination can contain AND,
OR and NOT boolean operators, allowing complex situations to be expressed.
Given the automaton and one abstract action,Mauto certi�es, using bisimulation
reductions, that the transition system does not hold the undesired action.

Example 1. The property "the Run signal cannot be emitted by the scheduler

while it is in interrupted mode" is veri�ed by proving that the following abstract
action is unreachable by the scheduler automaton :

true* : /EnterInterrupt? : (not /ExitInterrupt?)* : (not /ExitInterrupt?) and

/Run!

For each Esterel module of our executive, its important properties are checked
with this tool. However, the use of the sequencing composition instead of the syn-
chronous parallel operator prohibits veri�cations of behavior implicating several
modules.

4 A sparse time distributed platform

Based on our executive, we have implemented a distributed execution platform
which realizes the sparse time execution model proposed by Kopetz [9]. We detail
it in this section.

4.1 Di�erent distributed execution models for reactive objects

The execution of multiple reactive objects in a distributed environment may
follow di�erent schemes :

� Asynchronous ; no guarantees on module execution time and communica-
tion delays.

Two executions of the same system may lead to di�erent results, depending
on arbitrary parameters. It is an indeterministic system.



� Weak synchronous

A logical time may be de�ned, that is shared by all the objects of the system.
If the reaction of each object occurs at speci�ed instants of that logical
time, and if the communications between objects have a �xed length in that
logical time, then the system is deterministic. This can be accomplished, for
example, by a master clock, broadcasting ticks to all reactive objects, and
waiting for their acknowledgment to advance to the next instant. Each object
starts a reaction when it receives a tick, and emits its acknowledgment when
it is sure to have received all external signals for the next instant.

This is called the weak synchronous model in the literature, as �rst intro-
duced by Milner in [13], and implemented in the Saturn project [8].

� Timed weak synchronous

The logical time is anchored in the physical time. That is each instant of the
logical time corresponds to a de�ned granularity of the physical time. The
system is then time deterministic, i.e. its result is deterministic in value and
time. A distributed system providing this determinism considerably eases
the development of real-time distributed applications, that necessitate time
guarantees. We present in the next subsection an e�cient implementation of
such a synchronization.

4.2 O�ering Sparse Time to distributed applications

H. Kopetz, in [9], presented an execution model restricting event occurrences
in speci�c points of a distributed synchronized time. The set of those points
constitutes a sparse timebase. This model, when synchronized points are prop-
erly chosen, provides temporal order on events : an event E1 is either earlier,
simultaneous or later than an event E2.

Our reactive process management, timely synchronized, constructs such a
sparse timebase for the applications, realizing temporal order determinism of
their events.

To determine the synchronization points, we rely on a classical clock syn-
chronization mechanism, with a known precision p.

p =MAX((8i; (8k; (8l; kz(ki)� z(li)k) (1)

where z(e) is the time-stamp, on a reference clock, of the event e, and ki and
li are the i

th ticks of local clocks k and l.

We build a global timebase, with a granularity gg superior to the precision
p. Between two ticks of this global time, there is an interval K within which all
clocks have the same value.

K = gg � p (gg > p) (2)

Those K intervals are the synchronization points, de�ning a sparse timebase.
If all events of our system occur during one of the K intervals, then they will be
time-stamped with the same value on every machine.



We suppose the existence of a maximum event communication delay dmax.
If an event e is emitted from k at z(ki), we are sure that all recipients have
received it at z(ki) + dmax.

A receiver time-stamps an event, with the global timebase, as soon as it
receives it. For this value to be identical on all receivers, the emission must
respect two constraints (represented in �gure 2) :

{ An event must not be emitted before g(i) + p, so that its receiver won't get
it too soon (imprecision constraint)

{ An event must not be emitted after g(i + 1)� p� dmax, so that its receiver
won't get it too late (transit delay constraint)

Those two constraints de�ne the interval K :

K = gg � 2:p� dmax (3)

site i

site j

t(f) t(f)+1

t(e)+1t(e)
d

fe

pp

K

max

Fig. 2. Restricting emissions to K ensures uniform time-stamps

p and dmax values are �xed by the environment. gg has thus to be determined
to o�er a su�cient K length to allow event processing and emissions.

In our implementation, all kernel instances start their reactions at the be-
ginning of gg, and must complete it and emit its resulting signals at least at
time gg + p + K. K value has hence to be superior or equal to the worst case
execution time of this treatment, minus p. After their reaction, kernels receive
signals emitted from other kernels. They will be taken into account in the next
reaction, starting at next gg interval. All kernels will then have the same set of
message signals.

To prototype this model, we isolated the triggering mechanism of the syn-
chronous kernel, making it replaceable. We implemented three triggers, realizing
respectively the asynchronous, weak synchronous, and timed weak synchronous
models. In the �rst one, kernels react as soon as they detect an input signal.



In the second, an external sequencer broadcast stimulation to start reactions,
and collects acknowledgment of their completion. The last one implements the
model presented above by relying on a physical clock synchronisation protocol.

5 Results and conclusion

Our implementation revealed that it was indeed possible to use synchronous
programming to realize real time operating system kernels, gaining the inherent
bene�ts : determinism and formal descriptions.

Our distributed implementation also showed how we could realize a dis-
tributed timed synchronous model, preserving the bene�t of determinism and
time determinacy in a distributed setting.

However, the following di�culties must be noted :

1. We had di�culties in using Esterel synchronous parallel composition, essen-
tially due to the inability to dynamically create reactive objects. To circum-
vent Esterel limitations, we had to rely on an ad-hoc synchronous sequencing
operator, implementing a weaker form of composition. Note that the recent
reactive objects model proposed in [15] alleviates the problem by providing
a new synchronous parallel operator which allows dynamic creation of reac-
tive objects, at the expense of a slightly weaker semantic for interrupts (trap
constructs in Esterel).

2. The implementation exhibited poor performances, compared to the original
Chorus kernel. The sources of these ine�ciencies lie mainly in the way events
are implemented in the C++ library. The document [14] provides a detailed
analysis of the sources of ine�ciencies, and suggests ways to remove them.

3. Veri�cation tools at our disposal did not allow us to verify global properties
of the executive, because they did not take into account the weak parallel
operator used in the implementation. Note however that these tools could
still be used if we introduced bounds on the maximum number of threads
allowed.

These di�culties, in turn, suggest di�erent avenues for further research.

References

1. Ferrari, D.: Client requirements for real time communication services. Research Re-
ports ICSI TR-90-007, Berkeley, California, USA, 1990

2. Benveniste, A., Berry, G.: The Synchronous Approach to reactive and real-time

systems. IEEE, 1991

3. le Guernic, P., Gautier, T., le Borgne, M., le Maire, C.: Programming Real-Time
Applications with Signal. Proceedings of the IEEE, 1991

4. Halbwachs, N., Caspi, P., Raymond, P., Pilaud, D.: The Synchronous Data Flow

Programming Language Lustre. Proceedings of the IEEE, 1991



5. Berry, G., Gonthier, G.: The Esterel synchronous language : Design, Semantic, Im-
plementation. Journal of Science Of Computer Programming, Vol 19, Num 2., pp87-

152, 1992

6. Jourdan, M., Maraninchim, F., Olivero, A.: Verifying qualitative real-time properties
of synchronous programs. International Conference on Computer Aided Veri�cation,

Elounda, 1993, LNCS697

7. Lecompte, V.: V�eri�cation automatique de programmes Esterel. Ph.D thesis from
Paris VII University, 1989

8. Boniol, F., Adelantado, M.: Programming distributed reactive communicating dis-

tributed reactive automata : the weak synchronous paradigm. International Confer-
ence on Decentralized and Distributed Systems, Spain, 1993

9. Kopetz, H.: Sparse time versus Dense time in distributed real time systems. IEEE

Symp. On Distributed Systems, 1992
10. Rozier, M., Abrossimov, V., Armand, F., Boule, I., Gien, M., Guillemont, M., Her-

rmann, F., Kaiser, C., Langlois, S., Lanard, P., Neuhauser, W.: CHORUS distributed

operating systems. Computing Systems 1(4), pp 305-367, 1988
11. Vergamini, D.: Auto/Mauto User Manual, version 2-3. INRIA CERICS, 1992

12. Boulanger, F.: Int�egration de Modules Synchrones dans la Progammation par Ob-

jets. Ph.D thesis from Orsay University, 1994
13. Milner, R.: Calculi for synchrony and asynchrony. Theoretical Computer Science,

25(3), 1983

14. Potonni�ee, O.: Etude et prototypage en Esterel de la gestion de processus d'un
micro-noyau de syst�eme d'exploitation r�eparti avec garantie de service. Ph.D thesis

from Paris VI University, 1996

15. F. Boussinot, G. Doumenc, J.B. Stefani: Reactive Objects. Research Report 2664,
INRIA, France, October 1995.


