
Implementing TMN using CORBA
Object Distribution

O. Potonniée, L.H. Hauw, D. Ranc, Y. Bardout, Z. Canela
Alcatel Telecom RD
E-mails : {potonnie,hauw,ranc,bardout,canela}@aar.alcatel-alsthom.fr

Abstract
Telecommunication Management Networks can be considered as a set of distributed
objects interacting to perform the network monitoring and control functions.
 In this paper, we explore the way to a full object distribution based on the OMG
CORBA principles. Some studies and the early results of the X/Open-NM Forum
XoJIDM working group indicate that this is possible and promising for the future.
 We analysed, designed and implemented a full TMN Operation System based on
CORBA object distribution. One of our main priority has been to preserve the
interoperability with existing TMN components based on CMIP, taking advantage of
the existing assets of information models defined with GDMO, that we kept as the
specification language for interfaces between components. Specialized CORBA
services offering TMN specific services have been defined using CORBA Common
Object Services whenever that was possible.

Keywords : TMN, OSI, CMIP, CORBA, TINA

1. INTRODUCTION

Existing TMN platforms are built on top of proprietary infrastructures (e.g. HP
OpenView, Bull ISM, SUN Solstice...), that reduce the system openness, and entail
an undesired dependence to a single supplier. Furthermore, future TMN will have to
interact. Thus the trend in TMN evolution is the use of open standards : ODP,
CORBA, and future TINA architecture. A proprietary system will either have to
perform a costly adaptation, or lower its level of connectivity with external
telecommunication actors, leading to poor competitiveness.
 The introduction of CORBA object distribution mechanism [CORBA] in the TMN
has been discussed for a couple of years. Early feasibility prototypes made by
Alcatel Telecom RD and others have shown the technical possibility of introducing
CORBA in TMN. X/Open and the NM Forum joint committee, XoJIDM, defined the
translation [JIDM] from GDMO/ASN.1 to IDL, enabling the implementation of the
Managed Object concepts upon CORBA/IDL. Alcatel Telecom RD launched a
research case aiming at developing a prototype of a TMN OS using CORBA
distribution to validate this approach.
 Section 2 of this paper recalls basic concepts of TMN systems. Section 3 details
how CORBA meets our requirements, while section 4 presents our global

architecture. This includes translation of existing specifications to IDL, and the use
of three services reproducing CMISE services. Section 5 details how an existing
Alcatel TMN component can be extended to ensure CORBA support.

2. THE EXISTING TMN ARCHITECTURE

The TMN is made of a number of building blocks, realizing management functions
[M3010] . TMN is structured in management layers : Element Management Layer
(EML) for managing Network Elements, Network Management Layer (NML),
Service and Business Management Layers (SML and BML) that both offer higher
level services related to customers.

2.1 TMN structure

Interactions in the TMN are structured in a threefold entity : The network resource is
the physical or computational element managed, the agent, which builds a
standardized view of the resource and the manager, which represents the user.
The set of information managed by an agent is called the Management Information
Base (MIB), it is defined by a set of GDMO classes [X701] and ASN.1 types that are
implemented in Managed Objects (MO). To act on a MO, the manager issues
CMISE requests. In this document, we will use the shortcut Managed Object (MO)
to denote a Managed Object Instance.

2.2 OSI management principles

The fundamental function within OSI systems management is the exchange of
management information between two entities. It is referred to as the Common
Management Information Service Element (CMISE) [X710], it includes :
• The interface to the user, specifying the service provided (M-GET, M-SET, M-

ACTION, M-CREATE, M-DELETE, M-CANCEL-GET and M-EVENT-
REPORT). This is the Common Management Information Service (CMIS) ;

• The protocol, specifying the protocol data unit (PDU) format and associated
procedures. This is the Common Management Information Protocol (CMIP).

 A management operation can be applied on multiple MOs. The selection involves
two phases : scoping that defines a set of objects in the MIB, and filtering that
specifies an assertion the objects must verify.

3. REQUIREMENTS FOR A CORBA-BASED TMN

TMN systems have three major requirements : extensibility, flexibility and openness.
These requirements led to the M.3010 standard [M3010], which focused on Object
Technology, Distribution of applications, and Standardized interface. Since CORBA
is indeed a standard for object oriented distribution, it was considered as a valid
candidate for middleware in TMN area.

3.1 Conform to standards

In order to enable interoperability with existing TMN components, and their
integration, we kept OSI principles (agent-manager) and specifications language
(GDMO - ASN.1). An important input that allows a mapping between CORBA and
OSI comes from the JIDM Task Group, from X/Open and NM Forum [JIDM]. This
group develops specifications defining an algorithm to translate managed object
definitions in GDMO/ASN.1 into IDL. This enables the inter-working of
management systems based on OSI with those based on OMG technology which
should also facilitate integration between systems and network management.
 The TINA-Consortium applies the principles of ODP [X901] and OMG standards
to the needs of the telecommunication industry [TINA]. Our work can be seen as a
migration step from existing OSI TMN to future TINA TMN.

3.2 CORBA object oriented distribution

The use of CORBA provides :
• Flexibility. Agent/manager communication through CMIP makes applications

more flexible than monolithic construction; but this association is still rigid.
CORBA uplifts modularity with the possibility of grouping objects in and out the
processes, without modification to the source code. This allows a fine grained
modularity.

• Language independence. CORBA IDL supports bindings for C, C++, Smalltalk
and Java. IDL acts as a language bridge, allowing the choice of language for a
component without impacting others.

• Independence from supplier. CORBA is an open technology with several
suppliers, available on many platforms.

• Openness. Its generic standardized interfaces enable inter-operability with other
software components from the same TMN domain or from different domains.

• Access from commonplace terminals (i.e. PCs, Macintosh, X terminal, or
upcoming “Network Terminal”) is a major opening in TMN. It lowers costs and
allows reuse of existing development, for instance through the use of the Java
mapping that allows to have web-enabled CORBA components.

4. ARCHITECTURAL PRINCIPLES FOR A CORBA-BASED TMN

This section first discusses the manager/agent paradigm mapping into distributed
objects, then we present the main interfaces used to provide the CMISE services.

4.1 Mapping Manager/Agent on distributed objects

Porting the execution model and CMISE naming schemes to the CORBA world
induces several questions, that we address in this section.

4.1.1 Are agents objects ?
OSI management model relies on the notion of agent containing a set MOs. Agents
perform operations on MOs to satisfy managers requests. Thus, MOs are considered
as non-autonomous objects.
 CORBA execution scheme relies on the notion of servers, containing a set of
objects. Those objects are passive, but they are stimulated by incoming invocations
which generates a temporary activity which terminates when the invocation
completes. Depending on CORBA implementations, there can be several activities
inside a server. CORBA takes charge of the agent execution role with this
mechanism. The scope handling role can be handled by the managed objects
themselves, as we describe it later on in this article. This leads to a new architecture
where the agent functionality is spread among several actors of an interaction, and
where the only entities to consider are managers and managed objects.
 The interaction between a manager and a managed object uses two interfaces :
management operations, and notifications, described in Figure 1.
 This simplified view does not detail the complexity of communications. When
more than two entities are involved in an interaction, it is necessary to use a
communication object to control the communications. This issue arises for
notifications. We present in 4.3.2 a special binding object (Notification Channel).

manager
managed

object

notifications

management
operations

Figure 1 - Manager - MO interfaces

 Managers and MOs can naturally be implemented in CORBA objects. Those
objects can be configured differently depending on the needs : The more two TMN
objects have to communicate, the more they should be collocated in the same address
space. It is possible to implement in the same CORBA server a manager and all its
MOs. It is also possible to allocate a server for each MO, but this would be very
costly in memory and invocation time. However, each MO can be developed
independently. Comparing to OSI management architecture, where the unit of
development is the agent, the CORBA approach allows more flexibility in the
application configuration.

4.1.2 Reference vs. Name
In OSI, each Managed Object Instance is identified uniquely throughout the system.
The MIB structure defines a Containment tree of object instances. Each object class
has attributes which are used in instance naming. The Distinguished Name (DN) is
both a name, used at a logical level and handled by developers, and a reference used
at a communication level to locate the entities involved in an interaction. Every
communication packet contains a DN to denote its destination.

 In CORBA, naming and addressing are two separate topics. To access a server, a
client must first acquire its reference. Both clients and objects implementations have
an opaque notion of object references and are insulated from their actual
representation. Two ORB implementations may differ in their objects reference
representations. However, they all include information about the configuration of the
object (e.g. the name of the server containing the object, the host IP address, the
port). Thus, this reference is not location transparent.
 CORBA defines a Common Object Service, the Naming Service [COS], that
associates a logical name with a reference. Given a logical name, a client can get the
reference of a service through this Naming Service. The name being purely logical, it
is the only location independent reference provided in CORBA.
 This separation between names and references in CORBA implies to maintain a
structure storing the corresponding reference of each logical name. This is the
Naming Service role. Section 4.3.1 details how this service fits our needs for TMN.

4.1.3 Dynamic vs. Static routing
The previous distinction entails a different addressing scheme between the existing
TMN systems and CORBA. The first one uses a dynamic routing scheme to find the
target object, whereas CORBA uses static addressing.

C lien t
R ecoverab le

P roxy
N am ing
S erv ice

M anaged
O b jec t

M anaged
O b jec t
(new

vers ion)b ind (D N ,ob jre f1)

b ind(D N ,ob jre f2)

crea te (D N) reso lve (D N)

objre f1

opera tion ()

opera tion ()

opera t ion()

opera t ion()

opera t ion()

reso lve (D N)

objre f2

resu lt

resu lt

resu lt

resu lt

excep tion
?

C R A S H !

Figure 2 - Reference Recovery Service : Interaction diagram

 CMIP communication infrastructure dynamically locates the destination of each
packet using its contained DN. A modification in the configuration of the system
does not impact the identifier, as far as the containment tree remains unchanged.
This is an important feature for TMN systems, where components have long life
cycles and are subject to sporadic restarts for maintenance reasons (crash, update,
reconfiguration...).
 CORBA separates the communication procedure in two steps : first acquire the
reference, then use it. While this can enhance performance, there is an important
drawback : the reference has a limited validity period. Any modification in the object
configuration invalidates the reference. CORBA object references should therefore

be considered as access hints. In our architecture we have designed a mechanism that
transparently provides reconstruction of this reference when it occurs to be invalid.
We have extended basic CORBA stubs by implementing a Reference Recovery
Mechanism. A smart stub has been designed by encapsulating the original one, and
enriching it. The use of these stubs is completely transparent to the client. These new
stubs are created with a DN, which is the only reliable identifier of the remote object.
Those smart stubs provide both the speed of static CORBA routing, and the OSI
identifiers (DNs) independent of the configuration.
 This leads to define a translation of an ASN.1 ObjectInstance in IDL that reflects
both address and name.

 struct ObjectInstanceType {
ManagedObject objReference;
DistinguishedNameType objName;};

 Actually, this structure might be more complex, due to the various forms allowed
for names and references. This structure avoids to the manager a lookup process that
would be necessary if only the name was given, and the name allows a recovery
process if the reference becomes invalid.

4.2 System interaction scheme overview

Figure 3 gives a picture of our system elements interaction.

-ANAGER�S	

!GENT

-ANAGED�/BJECT

IMPLEMENTATIONS

.OTIFICATION

3ERVICE

.AMING

3ERVICE

�#ONTAINMENT�TREES�ROOTS	

-ANAGED

/BJECT

�#-)3%	

)NTERFACE

)NFOMODEL

3ERVICE

#ONTAINMENT

TREE

-/#

SPECIFIC

)NTERFACE�S	

#-)0

#OMM�

)NTERFACE

Figure 3 - The global picture

The Manager accesses MOs either via a generic CMISE interface (on an agent), or
via a specialized MOC interface generated from its GDMO specification. Some
CMISE fonctionality require the presence of external (i.e. neither in the manager, nor
in the agent) components, that we call CMISE Services. There are three identified

CMISE Services : the Naming Service, that maintains the relation between DN and
Object References. The Notification Service, that transfers notifications,
spontaneously generated by MO, to managers that subscribed. An Info-Model
Service maintains a complete and consistent representation of the OSI information
model.
The objective of our system is to offer a management compliant with the OSI
standards. To reach this goal, we needed an automatic translation of OSI
specifications into CORBA interfaces description in IDL. We extensively used the
work of the XoJIDM group [JIDM], that specified the translation of ASN.1 and
GDMO to IDL.

4.2.1 ASN.1 to IDL translation
It is important to keep in mind the difference between ASN.1 and IDL concerning
values description. Whereas IDL is an interface language, that describes the format
of the information transferred during invocations, ASN.1 is a complete specification
language, that provides information about the use of the data : allowed/default
values, allowed operations... From the ASN.1 description, the translation will only
keep the data structure necessary to transport the possible values. Some unauthorized
values may however be stored in the same structure.
 We adopted XoJIDM specifications regarding this translation. It defines a mapping
for all ASN.1 definitions. It takes care of specific scoping and rules of each
language, and of all the syntactic differences (hyphen replaced by underscores, case
conflicts...)

4.2.2 Managed Object Interface
Management operations on a managed object can be generic, through an interface
providing the standard CMISE operations. We called this interface CMISE/IDL. It
offers the full CMISE richness, including scopes and filtering. Alternatively, they
can be typed, through an interface generated from the GDMO specification of the
MOC. We called this interface GDMO/IDL. It is much simpler to use, the name of
its operations being those defined in the GDMO MOC. To be simple, scoping/
filtering and operations on multiple attributes are excluded from this interface.
 Our architecture is MO centric, and does not rely on any separate agent entity.
MOs have to maintain and manage their relationship (superior/descendants). Thus
each MO inherits from the standard Naming Context interface, its descendants in the
containment tree are entries in the Naming Context. The full description of this
feature is given in section 4.3.1. To ensure that a single CORBA object reference
points to those three interfaces, we used inheritance, as defined in the figure below.

CMISE/IDL

GDMO/IDL

CosNaming::NamingContext

Figure 4 - MO inheritance tree

 In legacy TMN platform, it is the agent that handles creation and deletion of MOs.
In CORBA objects creators are called factories. In our architecture, each MO is the
factory of its immediate descendants in the MIB. A creation can either be done
through the CMISE/IDL interface (the operation is not typed) with M-CREATE or
through the GDMO/IDL interface, using operations generated from the GDMO
NAME BINDING.
 The Managed Object contains all functionality it needs to perform the complete set
of CMISE services. Our architecture offers more flexibility than the existing one : a
MO can be independently developed and executed in any configuration.
 This architecture provides a way to avoid the scalability problem of current ORBs,
that may not handle enormous (millions) number of objects. All CORBA MOs do
not have to be registered to be managed, since they are always reachable by the
CMISE/IDL interface of its superior object.
 Following sections give further details on CMISE/IDL and GDMO/IDL interfaces.

4.2.2.1 CMISE/IDL : the generic CMISE interface
We have defined a generic interface offering the complete set of CMISE services.
This interface will actually be made of several IDL interfaces. It can be seen as an
agent access point. This interface allows managers to ask directly for CMISE
management operations (Get, Set, Action, Create, Delete), with parameters
corresponding to the CMIP PDU parameters. The agent will be in charge of the
management of its subtree : locating its contained objects (given their DN), scoping,
filtering, creation/deletion of managed objects... This corresponds to a direct
integration of agents from current TMN platforms.
 On the manager side, there is an IDL interface allowing to receive asynchronous
responses to previous requests. Events awaited by this interface are multiple replies
(from a single MO, or from a scoped range of MOs) and notifications.

4.2.2.2 GDMO/IDL : specific MOC interfaces
In addition to the generic CMISE interface, we needed specific interfaces, describing
in IDL the attributes and actions available on a specific MO. For that purpose, we
used a GDMO to IDL translation algorithm, derived from XoJIDM.
A GDMO MANAGED OBJECT CLASS is translated to two interfaces :
• An agent IDL interface: it has a set of IDL operations per ATTRIBUTE,

depending on its properties (GET, REPLACE...), and one IDL operation per
ACTION. When the action has a REPLY SYNTAX, the corresponding IDL
operation has a UsingMR exception to inform the manager of the use of a
multiple replies mechanism. We extended XoJIDM specifications by adding to
the interface a creation operation per possible descendant type, to fulfil its factory
role (based on the NAME BINDING templates).

• A manager IDL interface: it allows to receive notifications.

4.3 CMISE services

As stated in the previous section, it is necessary to develop specific services to
provide full CMISE functionality in CORBA. Two are mandatory (Naming and
Notifications), and one is provided to implement a dynamic Shared Management
Knowledge (SMK). We give some information on the realization of these services.

 XoJIDM early work proposed to realize CMISE services reusing as much as
possible the CORBA Common Object Services [MAZU]. We adopted a more
cautious position considering their actual availability and their functional limita-
tions. We used them when already available, and fully fit our requirements.

4.3.1 Naming
Our system is heterogeneous, it comprises:
• Component accessible by CMIP only. Their naming is managed by their CMIP

Communication Infrastructure. CORBA objects access them through a gateway.
• Integrated components. Those were developed to work on CMIP, but our generic

CMISE interface enabled them to work on CORBA. An agent is a CORBA
server. It manages the naming of its MIB.

• Newly developed components. They offer a set of Managed Object interfaces.
Each MO, being a Naming Context, manages the naming of its direct children,
conforming to the CORBA Naming Service specification.

M O

In teg ra te d
a g en t

In te g ra ted
ag e n t

M O

M O

M O

M O

C O R B A
N am e S erve r

C M IP
G atew a y

C M IP a g en t

C M IP a g en t

C M IP
O R B

A B
m eans “B is in th e A
N am in g C o ntex t” (A
co n ta ins B).

Figure 5 - Global naming scheme

Thus we have three kinds of naming in the same system. However, all naming
islands use the same notion of containment tree and DN. We decided to provide a
unified method to access these islands (without getting wet). For this purpose, we
used the CORBA Naming Service. Each root of a naming island is a Naming
Context, and inherits from the standard related interface. Those contexts are
registered in one (or several connected) CORBA Name Server(s).

4.3.2 Notifications
CORBA Event Service lacks filtering capabilities to fulfil TMN event Forwarding
Discriminator role. We adopted TINA specifications of a Notification Service
[TINA], which is a specialization of CORBA Event Service, and used an
implementation prototyping these specifications. In this service, filtering of events is
performed inside communication Channels.

N otification
C hannel

N otification
Server

Em itters N otification Service R ecipients

2

2

1
1

3 3

1

2

3

R egistration

C ontrol

N otification passing

Figure 6 - Notification Service architecture

The Notification Server is responsible for the management of the Notification
Channel. It receives registrations from emitters and recipients of notifications. It
returns them the reference of the Notification Channel. The recipient gives a filter
expression to this channel. When the emitter, wants to propagate a notification, it
invokes a push operation on the channel. This channel processes the list of recipients
which requested that notification, and forwards them the notification if it matches
their filter.

4.3.3 Info-model service
GDMO is a specification language while IDL is an interface language. Hence, IDL
doesn’t reflect behaviour, required or permitted values, optionality of features. An
optional external component was added to our framework : the Meta Management
Information Base (MMIB) which is handled by the Info-model service. It mirrors all
GDMO concepts, as defined in X.722 [X722] (e.g. type, name, OID, contained
objects of any MO).

5. IMPLEMENTATION OVERVIEW

Two ways of implementing our concepts were possible, either by using a dynamic
approach or by using a dedicated static approach. In the dynamic one, all requests are
interpreted and no compilation is required. This approach uses the dynamic
mechanisms of CORBA such as DII and DSI. But since this approach is complex
and could lead to performance problems. In the static approach, the software is
dedicated to a given information model. The following gives a rough description of
our implementation scheme and the changes we made in order to obtain a full
CORBA-interoperable component.
 Our architecture provides facilities on the agent part to receive indications (with
error-checking) and send back the responses (possibly many), to emit event reports
and to retrieve Managed Object implementations concerned by an incoming request.
While on the manager part, mechanisms allow to send requests, receive possible
corresponding confirmation, handle the responses and receive event reports. We have

introduced in our existing component all the features for the support of CORBA-
based interactions. Thus, communication between managers and agents can be either
CORBA or CMIP based.
 Actual TMN component implementation consists of three main software [ALCA]
parts:
• some generic support software that insures all basic functions of a CMISE agent

(naming tree management, communication infrastructure, stacks, CORBA
libraries). This software forms a generic agent/manager with containment tree
management support;

• some software which is generated by specific tools of the development
environment associated to the framework. Classes generated from GDMO,
ASN.1, and IDL specifications are classified in this category. This set of classes
is therefore information model dependant;

• some software which supports the application-specific behaviour of the GDMO-
generated classes. This software is implemented by the application designer.

 As part of our toolchain, two compilers generate C++ code from the ASN.1
definition and from the GDMO description. Classes that handle C++ representation
of ASN.1 types also handle C++ representation of IDL types. This allows to use
either IDL types or ASN.1 C++ types in a transparent way. These classes are the
basic support for type interoperability with a CORBA-based communication in a
CMIS environment. Each Managed Object Class of the GDMO specification is
implemented as a C++ class that implements management operations. We have
customized our GDMO compiler in order to generate the required CORBA/GDMO
adaptation code. Since each MO is a CORBA Naming context.
 The software component has both the behaviour of a CMIS agent and of a CORBA
server. Internally it is built with a CMIS agent architecture. Its CORBA server
behaviour relies on specifically generated C++ code (mentioned above) from the
ASN.1 and the GDMO specification. In the generic CMISE interface context, the
CMIP paradigm is partially exported to the CORBA interface. Incoming CORBA
requests mimic CMIP requests (SET/GET/CREATE...). The agent responds to the
CORBA requests just like a CMIP request, except that the outgoing answer is
supported by classes generated from the IDL specification.

6. CONCLUSION

The TMN as defined by M.3010 has been an important step towards open distributed
management, but its relative heaviness and its limited inter-operability with the
mainstream information technologies have slowed its penetration. Today, the TMN
should evolve to meet the challenging requirements of the rapidly changing
telecommunication market. The integration of CORBA as the base middleware
should launch TMN towards its future while securing existing and on-going
developments.
 The architecture and the principles described in this document show that the
implementation of a TMN Operation System based on CORBA is fully feasible. The
proposed technology will also allow the integration and the inter-operability with

CMISE based applications and other CMIP agents or managers. This smooth
evolution path will largely increase the acceptance of the introduction of the full
object distribution paradigm into telecommunication management. This could be
considered as an important step towards TINA [TINA], which aims at being the
future telecommunication architecture.
 To optimize the overall performance of the system, we propose a limited (but
pertinent) usage of the CORBA Common Object Services (COS). Other propositions
[MAZU] have proposed, at the opposite, to use them as much as possible. But their
current limited availability, and most of all the architectural constraints they imply,
have led us to build innovative and adapted services using existing COS interfaces
whenever possible.
 This document should constitute an important input for the on-going and future
work of the XoJIDM on the CMISE to CORBA Interaction Translation.
 The architecture presented in this document has been prototyped, demonstrating
the interoperability between CMIP and CORBA components. This prototype makes
use of the Naming and Notification services. Performance measurements are
currently in progress, but early results seem to give a slight advantage for CORBA
compared to CMIP. The next step will be to experiment on a large scale the proposed
implementation, to validate the scalability of the architecture.

References
[ALCA] The ALCATEL Management Platform : ALMAP, Product description, 1997.

http://www.alcatel.com/almap
[AAR1] Introduction of CORBA in TMN systems, AAR internal report, 1995
[CORBA] Common Object Request Broker : Architecture and Specification r2.0, OMG, 1995
[COS] CORBA services : Common Object Services Specification, OMG 95-3-31, 1995
[JIDM] Inter-Domain Management : Specification Translation, X/Open and NMF

Preliminary Specification, Ed. Open Group, 1997
[M3010] Principles For A Telecommunications Management Network, ITU-T

Recommendation M.3010, 1993
[MAZU] Mapping of Common Management Information Services to OMG Common Object

Services Specifications. Subrata Mazumdar, AT&T Bell Lab CSRL, 1996
[TINA] TINA DPE Services Specification, TINA-C, 1994
[X701] Open systems interconnection - System Management Overview, ITU-T

Recommendation X.701, 1992
[X710] Common Management Information Service Definition for CCITT Applications,

ITU-T Recommendation X.710, 1991
[X722] Structure Management Information : Guidelines for the Definition of Managed

Objects, ITU-T Recommendation X.722, 1992
[X901] Reference Model of Open Distributed Processing, ISO/IEC JTC1/SC21/WG7, ITU-

T X.901 | ISO/IEC 10746-1, 1995

