
!�.OTIFICATION�3ERVICE�FOR�4).! ��

-ICHEL�2UFFIN��!LBAN�#OUTURIER��/LIVIER�0OTONNI©E��-ARCEL�VAN�DER�-EULEN

Alcatel Corporate Research Center†

3ABINE�(ABERT
O2 Technology‡

 The work presented in this paper has been partly funded by the European Union ACTS projects ReTINA (AC048) and VITAL

(AC003).
† Contact : Michel Ruffin, Alcatel Alsthom Recherche, Route de Nozay, 91460 Marcoussis, France. Tel.: +33 (0)1 69 63 13 57, Fax :

+33 (0)1 69 63 17 89, E-mail: Michel.Ruffin@aar.alcatel-alsthom.fr
‡ O2 Technology, 7 rue du parc de Clagny, F-78035 Versailles Cedex, France. Tel.: +33 (0)1 30 84 77 46, Fax: +33 (0)1 30 84 77 90,

E-mail: sabine@o2tech.fr

!BSTRACT
4HIS� PAPER� PRESENTS� !LCATEL S� .OTIFICATION� 3ERVICE

WHICH� HAS� BEEN� DESIGNED� IN� THE� CONTEXT� OF� 4).!��)T� HAS
BEEN� PARTLY� DEVELOPED� IN� THE� FRAMEWORK� OF� THE� 4).!
AUXILIARY� !#43� PROJECTS� 2E4).!� �!#���	� AND� 6)4!,
�!#���	��!�FIRST�PROTOTYPE�HAS�BEEN� ISSUED�BY�MID������
"ASED�ON� THE�USERS� FEEDBACK��A� SECOND�VERSION�HAS�BEEN
DESIGNED�AND�WILL�BE�DELIVERED�BY�END������

4HIS� PAPER� PRESENTS� THE� RATIONALES� FOR� SUCH� A� SERVICE
AND� ITS� MAIN� FEATURES�� GENERIC� AND� TYPED� NOTIFICATION�
PUSH� AND� PULL� COMMUNICATION� MODELS�� FILTERING�
SUBSCRIPTION�� FEDERATION�� FAULT
TOLERANCE�� AND� QUALITY� OF
SERVICE��&OR�EACH�FEATURE��A�COMPARISON�IS�DONE�WITH� THE
FOUR�ACTUAL�/-'�PROPOSALS�FOR�A�.OTIFICATION�3ERVICE�AND
THE�RATIONALE�FOR�OUR�CHOICES�IN�THE�LIGHT�OF�THE�4).!�USE
OF�THE�SERVICE�IS�STRESSED�

1. Introduction

The Notification Service is a DPE service based on the
CORBA technology allowing objects to emit
asynchronous information - called notifications - without
being aware of consumer objects. Similarly, it enables an
object to receive notifications without having to interact
with supplier objects. The service acts as a broker
between suppliers and consumers.

Managing notifications is a standard issue for
telecommunication applications. A CORBA-based generic
Notification Service should fulfil multiple needs in the
context of TINA. For instance, the service can be used to
propagate resource configuration updates, accounting
information or alarms for reacting to failures.

OMG has specified a service to transmit events
between objects. This service, the « Event Service »,

provides some of the functionality required to dispatch
notifications. However, it misses essential properties that
make it unusable as it is in the telecommunication domain:
filtering and quality of service. Filtering events should
drastically reduce the event traffic which can be very high
in large scale systems. The Notification Service must also
allow to associate data management to events. This data
will be known and used by the service to manipulate
events in a specialised way. For instance, a priority
associated to each event will allow the Notification
Service to order events.

This paper presents a global design of a Notification
Service for TINA, based on Alcatel’s experience in
designing and implementing such a service. It compares
this design to the current four proposals answering the
[OMG RFP] for a Notification Service: [DTSC/Nortel 97,
GMD 97, TID and HP 97, NEC et al 97].

Alcatel’s Notification Service has been developed in
the framework of the TINA auxiliary ACTS projects
[ReTINA] and [VITAL]. The requirements on the service
are coming from the TINA architecture designers of these
projects but also from Alcatel experience in introducing
CORBA into TMN. A first prototype has been issued by
mid 1996. Based on the users feedback, a second version
has been designed and should be delivered by end ‘97.

By prototyping a Notification Service, Alcatel’s goal is
not to develop a product, but to understand the
requirements on such a service for telecommunication
uses and more specifically for TINA uses in order to
encourage the development of the resulting features in
future products of DPE service providers.

Section 2 presents the requirements for a TINA
Notification Service. Section 3 describes the basic
principles of a Notification Service: the architecture of the
service, the definition of a notification, the push and pull
communication model and the filtering mechanism. Then
the different features of a Notification Service are

presented: subscription, federation, fault-tolerance and
quality of service. Finally, section 5 concludes and
presents the future work. A table is given in annex
summarising the different features of the Notification
Service studied.

2. Requirements

2.1 Needs for a Notification Service

In the Telecommunications Management Network
[TMN] systems notifications (called events in the TMN
context) are used to propagate data to unknown sets of
components. In this context a notification or an event can
be of one of two kinds :
• %RROR� INFORMATION used to inform that an element is

close to, or has entered into an error state. The
receivers of such information can then act to correct
the situation.

•)NFORMATIVE� INFORMATION. For instance, the availability
of a new service in the system, or the expiration of a
deadline. This kind of data can be used in any
application domain.

The needs for a Notification Service have been
identified in several TINA applications:

• In Alcatel’s work of introducing CORBA into
TMN, which can be considered as a first step
towards an industrial implementation of TINA. The
Notification Service should provide the functions of
traditional TMN’s Event Forwarding
Discriminators to propagate fault signals. Alcatel’s
Notification Service prototype will be used through
a gateway between a CORBA TMN manager and a
CMIP based agent.

• The VITAL project expects the availability of a
service providing the same functionality as TMN’s
Event Forwarding Discriminators in the domain of
fault information propagation for use in the context
of a full implementation of the TINA architecture.

• In ReTINA , the Notification Service is planned to
be used to disseminate accounting information. The
TINA resource configuration management could
also use this service to propagate the resource state
modifications. And the O2 database will use the
notification service to propagate events, like the
logging of a user or the deletion of an object, to
objects managing or controlling the database.

2.2 Requirements for a TINA Notification
Service

For telecommunications and other application domains,
the following requirements on the notification service
have been identified:
• 3CALABILITY is mandatory in telecommunications

systems, which are large and highly distributed.
Consequently, the notification service should be able
to manage important numbers of suppliers, consumers,
and events. In order to avoid bottlenecks, the service
should not be monolithic.

• 0ERFORMANCES must be kept high, despite of
distribution. The communication path between
suppliers and consumers must be minimal, and the
number of events transmitted on the network must be
reduced to the subset of pertinent ones.

• &AULT�4OLERANCE is essential for a service to maintain
the system in a safe state. This property can be
observed at different levels of the service. First, the
service must be able to resist crashes, and thus
maintain a persistent copy of its state. Second, it must
resist to erroneous interactions with suppliers and
consumers. For example, it must check validity of
filters or notification occurrences in terms of
notifications types. Third, it must also ensure the
continuity of the service during occurrence of events
bursts.

• &LEXIBILITY� allows users to adapt the service to their
needs. This is important for a service that can be used
in multiple application domains.

• (IGH�LEVEL�INTERFACES simplify the developers’ task by
reducing the learning curve and minimising the code
on the client side. Reducing the number of steps to
perform an operation reduces the risk of bad
manipulations.

Experience in distributed object oriented systems led to
identify a set of solutions that fulfil these requirements:
• &EDERATION increases the PERFORMANCE and SCALABILITY

of the system by balancing the load of one component
over multiple components.

• &ILTERING reduces the network load, increasing
PERFORMANCE by allowing consumers to precisely
specify the events they are interested in. Filtering is
applied to the data associated to notifications. Only
notifications matching filters are sent to consumers.

• 1UALITY� OF� 3ERVICE parameters ensure FLEXIBILITY by
providing an interface for setting the service to the
most suitable behaviour. In particular, event queue
management and reliability should be customisable
depending on notifications properties. These

properties can be either associated to the kind of
notification or to specific instances.

• 4YPED� AND� GENERIC� INTERFACES, as defined in the
OMG Event Service, should both be available to
communicate the event data. The choice of the kind of
interface is part of the FLEXIBILITY�of the service. Typed
interfaces are HIGH� LEVEL� INTERFACES, whereas generic
interfaces have better PERFORMANCE.

3. Basic components

This section presents the basic components of the
Notification Service: the service architecture, the concept
of notification, the pull communication model and the
filtering mechanism.

3.1 Architecture

Alcatel’s Notification Service architecture decomposes
the Notification Service in two parts: a notification
manager and several notification channels (see Figure 1).
Since the notification mechanism has been defined for
[TMN] in [X733, X734, X720], normalised concepts have
been reused in order to match the telecommunication
needs. The TMN Event Forward Discriminator (EFD)
which constructs event reports and manages the
notification propagation (e.g. filtering and routing) can
easily be mapped on the notification channel concept. A
notification manager is introduced because general
purpose Life Cycle Service functions are not powerful
enough to meet the requirements of telecommunications
as defined in TMN. This manager is in charge of the
global administration of the service (instanciating and
removing channels, managing subscription to the service,
remembering subscriber’s configuration, notification type
description, checking types, establishing federation
between channels, ...). Subscribers register to the service
for supplying or consuming a KIND of notification (this is

defined in Section 4.1). There is one notification channel
for each KIND of notification.

Through the subscription interface, a consumer can
dynamically provide a filter to the manager. Filters are
used in order to reduce the amount of notifications that a
consumer receives. Notification channels provide an
interface to the manager for their administration. Among
other information, filters are passed to the channels
through this interface.

When a supplier or a consumer subscribes for a KIND of
notification and no corresponding notification channel
exists, a channel is created by the manager. When
subscribing, a supplier gets back in return the reference of
a notification channel. Suppliers can then provide
notifications to the channel by invoking its notification
interface. For each of its consumers, the notification
channel uses the consumer’s filter to determine whether
the notification has to be propagated to the consumer.
Propagation is done by invoking the consumer notification
interface.

In the example of Figure 1, a supplier invokes the
notification channel to propagate a notification. The
channel filters the notification according to the filters of
each of its consumers. The notification passes through
only one of the three filters and is propagated by invoking
the corresponding consumer.

The OMG proposals that want to stay compliant with
the Event Service specifications ([DSTC/Nortel],
[TID/HP] and [NEC]) do not specify the manager part of
the architecture and the administration interface of the
notification channel is directly accessed by suppliers and
consumers. Channel creation and destruction and storage
and management of global service information are not
directly addressed. [DSTC/Nortel] mentions the use of an
event type repository to store the type description of
events. [NEC] defines an event network object for
managing the federation of channels. Finally [GMD] does

Notification manager

Interface

Filter

C

C

C

S

S

S

Notification Service

Registration &
administration
Subscription

Propagation

Notification
channel

S

C

Supplier

Consumer

Notification
channel

Figure 1: Notification Service architecture

not clearly define the channel concept, the propagation of
notifications is handled by a notification server, and some
internal combination of computational objects assumes the
role of the channels.

The manager allows to discharge users from the burden
of managing channels (instanciation and destruction) and
it offers high level operations on channels such as
automatic federation for load-balancing. The split of the
service in two kinds of entities (manager and channels)
allows to discharge the channels as much as possible from
administration work. The main channel task - notification
filtering and routing - can thus benefit of more resources.
The interface and functions of the channel administration
interface are limited to the minimum since a part of the
work is done by the manager. This basic choice is directly
driven by scalability and performance requirements.

3.2 Notification

A notification is passed by invoking an operation on
the notification interface. The notification interface is the
same for a supplier invoking the service side (i.e. the
channel) as for the service invoking a consumer. Interface
types can be either generic or typed corresponding to
generic or typed notifications.

Both notification propagation models can be seen as
multicasting asynchronously on some set of unknown
objects after filtering. From the user point of view, typed
notifications allow to propagate notifications as a remote
invocation on the consumers with the guarantee of type
checking. Generic notifications are lower-level and allow
to propagate notifications like packets of data. The clients
have to pack the data on the supplier side and unpack it on
the consumer side. Type checking is not guaranteed and
consequently this method is more error prone. The

drawback of typed notifications is the complexity of a
user-transparent implementation and the fact that the use
of typed notifications in this implementation might be
time consuming compared to the use of generic
notifications.

In Alcatel’s Notification Service, generic or typed
notifications are ARBITRARY and USER
DEFINED. This proves
to be very convenient for the user because from this point
of view the channel interface is defined by the user. In
order to get better performances for typed notifications we
will consider predefined typed notifications later on
(Section 3.2.3).

������ 'ENERIC�NOTIFICATIONS
A generic notification is a user-defined set of data and

a header. The generic notification interface supports a
single operation (let’s call it push ()) having as a
parameter the generic notification. In Alcatel’s
implementation the data part of the generic notification is
encapsulated by a CORBA « any » type.1 The header may
contain information such as quality of service requested,
supplier identification, timestamps, notification family
information (alarm, error, warning, ...).

Figure 2 presents the propagation of a generic
notification. The supplier invokes the « push () »
operation of the channel with a generic notification (gn) as
parameter. After notification filtering (assuming that the
notification passes the filters) the channel invokes the
same operation on each consumer.

������ 4YPED�NOTIFICATIONS
A typed notification is an operation with an arbitrary

number of user-defined typed parameters. The type of the
notification is the signature of the operation (operation
name and type description of its parameters). A
notification interface can contain several typed
notifications.

Typed notifications are conceptually more object-
oriented than generic notifications, since the propagation

1 The CORBA « any » type allows to invoke dynamically operations

taking as parameter some data of unknown type. The « any » is
composed of two fields containing the type description and the data

C
S

C
push (gn)

push (gn)

push (gn) typedef struct {
 Header h;
 any data;
} Gn;

Figure 2: Generic notification propagation

CS op (arg1, ..., argn)op (arg1, ..., argn)

Figure 3: Typed notification propagation

of the notification consists in the propagation of an
ARBITRARY USER
DEFINED operation (see Figure 3).

Depending on the use of notifications, both kinds of
notification are useful: a low-level mechanism with good
performance or a high-level one less error prone.

������)MPLEMENTING�TYPED�NOTIFICATIONS
Arbitrary client-defined typed notifications constitute a

powerful mechanism. In Alcatel’s prototype this is
implemented by using the Dynamic Invocation Interface
(D.I.I.) and the Dynamic Skeleton Interface (D.S.I.).

Figure 4 presents the propagation of a typed
notification in our implementation. The supplier wishes to
invoke the client-defined operation of name « op » with a
list of arguments (noted args) on the notification channel.
Notification channels are compiled once and present an
interface independent of the client operations. This
implies the use of the D.S.I. in order to receive
invocations of operations which do not belong to the
channel interface. The D.S.I. allows to receive this
unknown operation and to transform it to provide to the
channel the stringified name of the operations and a
sequence of « any » containing the operation parameters.

In the Notification Service V1, the D.S.I. was not used.
Instead, the client had to provide a « converter » object for
each kind of typed notifications. This « converter » object
had to receive notifications from the supplier, transform
the invocations into a string and call a notification channel
operation to convey the string to the channel. In addition
to the burden of writing this object the user also had to
provide a factory for the converter object. So the use of
the D.S.I. largely simplifies the programming work for the
service client.

The use of D.I.I. is needed between the supplier and the
channel (see Figure 4) in our current implementation,
because the supplier has a reference on a channel object
that does not support the method for a specific typed
notification in its interface. Between the channel and the

value. Complex data can be built by for instance passing in an « any » a
sequence of « any ».

consumer D.I.I. is needed because the channel is not
linked with the stub for the interface of the consumer.

The main drawback of the use of D.I.I. and D.S.I. is the
cost in time of such invocations. For a telecommunication
application (and thus for TINA), the few typed
notifications which have been defined for TMN can be
expected to be suitable for fault-management. Since these
kinds of notification can be known in advance, a set of
predefined will be added in future versions of the
Alcatel’s prototype. Since these predefined notifications
will be known at compile-time, the use of time consuming
mechanisms such as D.I.I. and D.S.I. will not be needed
for these notifications.

������ .OTIFICATION�CONCEPT�IN�/-'�PROPOSALS
[DSTC/Nortel] defines generic notifications as

arbitrary sequences of name/value pairs where the names
are strings. Some predefined names can be « understood »
by the service, allowing to form a notification header. The
notification type description is identified by a particular
name. Typed notifications are not specified in the
proposal.

[GMD] defines four types of generic notifications
corresponding to object creation, object deletion, attribute
value change and method invocation. The object creation
and method invocation types both contain an arbitrary
sequence of name/value pairs. Compared to other
proposals, there are four kinds of generic notifications
with strongly typed headers. Typed notifications are not
specified in the proposal but the method invocation type
allows to describe an invocation and can be considered as
a basic typed notification.

[TID/HP] defines generic notifications as a block of
data of any type, arbitrary user-defined and without a
header. Typed notifications are not specified.

[NEC] defines arbitrary generic and typed notifications
similar to the generic and typed events defined for the
Event Service. In addition, structured events are defined
for increased filtering performance. These events are
composed of a header part, a sequence of name/value
pairs and an opaque body. Filtering is limited to the

Invoke («op», args,)

Interface

S C

DII

Reference

ORB

DSI

Notification channel

DII

Filtering

Invoke («op», args,)

Stub

op (args)

Figure 4: Implementation of typed notification

header and to the sequence section. Anticipating the OMG
standard on passing objects by value, an event object
encapsulating a structured event is defined.

To our knowledge Alcatel’s prototype is the only
implementation providing typed notifications that can be
arbitrary defined by the user. From the users of our V1
prototype, we learned that whenever possible (when time
constraints are not too strong), users prefer to use typed
notifications. Generic notifications are an alternative when
high performances are needed.

In Alcatel’s Notification Service, the type descriptions
of notifications must be provided to the service manager
before subscribers and consumers can subscribe to them.
This allows to avoid the problem foreseen in [NEC]
concerning low performance for the filtering of user-
defined types, because when providing a description, a
name can be associated to notification operations (in the
case of typed notification) and data fields. Names can be
used for identifying the filtering fields of notifications.

Finally the definition of predefined TMN-like typed
notifications allows to overcome the problem of
performances for typed notifications, since in this case the
use of D.I.I. and D.S.I. is not necessary.

3.3 Pull communication model

Until now only the PUSH communication model has
been considered: the notification is moving from object to
object at the initiative of the supplier objects. Suppliers
invoke the channel when a notification occurs and the
channel invokes the consumers on a notification reception.

With the PULL communication model the notification is
moving between objects at the initiative of objects
needing notifications: consumers invoke the channel to get
notifications or the channel invokes the suppliers to get
notifications. The two models can be combined as
requested, suppliers and consumers choosing their
communication model with the channel at registration
time.

The pull communication model implies the need for an
additional notification interface. This interface should be
supported by the channel when consumers use this model
or by a supplier if the supplier wants the channel to pull its
notifications. This interface is nearly symmetric to that of
the push model. For instance for generic notifications, the
consumer needing a notification will invoke the
pull () operation of the channel. It will be blocked
until a notification will be available. An additional non-
blocking operation (try_pull ()) is added in order to
return even when no notification is available.

In Alcatel’s implementation the pull communication
model is limited to generic notifications. This is due to a
need to assess the usefulness of this mechanism in
telecommunication applications before extending it to

typed notifications. In the context of VITAL, ReTINA
and our experience of introducing CORBA in TMN no
use has yet been found of the pull model, but all the OMG
proposals provide it.

One of the possible advantage of this model is the fact
that a consumer does not have to be an object.

For the sake of clarity, the pull communication model
will not be considered in the remainder of this paper
except when a feature description requires this.

3.4 Filtering

The filtering mechanism used by the Alcatel
notification service is directly derived from the EFD
filtering mechanism described in [X720]. The EFD
filtering description language defined in ASN.1 has been
translated in IDL. Writing a filter consists in assembling
IDL structures which can be send easily and dynamically
through invocations. A filter is a recursive structure
organised as a tree of logical expressions, whose leafs are
filter items. A filter item is a union storing a constraint
(equality, substring, superString, greaterOrEqual,
lessOrEqual,...) and a couple of attribute names or values.
A filter is a union which switches on a filter type (TRUE,
AND, OR NOT, filterItem) and stores a sequence of filter
(in the case of AND and OR), a filter (for NOT) or a filter
item (for the filter type FilterItem). An extension to the
TMN norms filter has been brought providing the
possibility to compare two attributes instead of one
attribute and one value.

The Alcatel Notification Service does not need to parse
strings describing filters, and can manipulate and forward
them without string translation. Moreover, a filter can
easily be incremented by applying a logical AND or a
logical OR between the existing filter and a given filter.
Although this filter notation comes from the TMN norms,
it is very close to an IDL notation of the OMG trader
constraint language.

The place of the filter is essential in a notification
service, because the performance depends on the moment
and the place where the notification is processed (and
possibly deleted) by the filter.

Placing filters into the channel is essential. This allows
to optimise the combination of filtering and routing to
decrease the network traffic. Only filtered notifications
will be multicasted to consumer objects. Another solution
consist in placing the filter between the channel and the
consumer in a different CORBA object. In this case
filtering is done after routing which means that
notifications are broadcasted to every filter. This solution
decreases greatly the interest of filtering, since in this
case, filtering does not reduce the amount of messages
transiting between objects.

In a federated notification service, where multiple
notification channel can filter the same notification
successively (see chapter 6), the filtering must take place
as close as possible to the supplier. It could even be in the
supplier’s address space itself to avoid any network traffic
for unwanted events. However, this approach means to
have one notification channel, i.e. the encapsulation of the
filtering engine, in the supplier’s application, like the EFD
in TMN. Through an optional advanced interface, the
supplier could offer to the notification manager the mean
to create a notification channel in the supplier’s address
space. This implies that the supplier application has to be
developed with its own notification channel and filtering
machine. This channel must implement every feature of
the classical channel. The manager could manage this
channel normally, and update the filter in order to match it
to the real demands of the final consumers.

In the same way,� to avoid the emission of events at
their source when there is no consumer awaiting them, the
manager could set the suppliers in a mute mode through
the advanced supplier interface, until a new consumer
registers. This functionality is not offered in the current
implementation of our service, but it is planned to be
added to future releases. Nevertheless these mechanisms
must only be optional features in order to preserve a light,
classical and easy use of the notification service.

These filtering features allow to process the
notifications as close as possible to the supplier and to
send notifications only when a consumer needs them.
Consequently Alcatel’s Notification Service’s filtering is a
powerful tool adapted to the need of telecommunications.

4. Advanced features

This section describes the Notification Service
advanced features which allow the service to be integrated
in telecommunication applications.

4.1 Subscription

Several points have to be considered for designing a
powerful subscription interface:
• $ESCRIPTION�OF�NOTIFICATIONS��Families of notifications

can be named. Their type can be described to the
system. Some tools can be provided to organise and
manage the description information.

• $ESCRIPTION�OF�SUBSCRIBERS� Suppliers and consumers
can be identified logically to recognise them in case of
failures or to associate a context to them (For instance
a filter can be associated to a consumer).

• 0ROPAGATION� OF� SUBSCRIPTION� INFORMATION�� When
suppliers register to the service, the description of the
notification that they intend to send can be made

available to other components of the system. When
consumers register, their filter can be forwarded to the
different emitters of notifications in the system.

• 0ROVIDING� FILTERS: dynamically or statically, by
replacing the whole filter or by incrementing (see
Section on Filtering).

• The possibility to SUSPEND and RESUME the
reception/emission of notifications for a while.

������ .OTIFICATION�DESCRIPTIONS�AND�SUBJECTS
In Alcatel’s Notification Service, notifications are

organised by SUBJECTS. A subject is an ARBITRARY, CLIENT

DEFINED name for notifications which are sharing the same
type or a SET of types. A subject is the minimum unit for
subscription or un-subscription.

Subjects must be declared to the service before being
used. When declaring the subject, the list of associated
notification types should be described. In the case of a
generic notification, the type description corresponds to
one or several data types. Whereas in the case of typed
notifications, the type description is the interface signature
corresponding to the set of operations associated with the
subject. The signature is composed of the list of signatures
of the operations; this signature of an operation is
composed of the operation name and the type description
of its arguments. For a typed notification subject, the type
description will be used to check at registration time
whether suppliers propose to invoke the correct service
interface and whether consumers provide the correct
interface to the service. For generic and typed
notifications, the type description is used in the filtering to
identify the data field (generic notifications) or the
operation name and the arguments of operations (typed
notifications).2

A subject is an abstraction allowing to organise
notifications logically. Any subject for which a
subscription has been done corresponds to an instanciated
notification channel.

Subjects can be organised hierarchically. For instance,
« failures/hardware/disk » could be a subject in which
« disk » is a sub-subject of « hardware ». Subjects are
declared by the user and form a hierarchy organised as a
forest.

Once subjects are registered by the service, suppliers
and consumers can subscribe to several subjects in a
single operation and it is possible to register a set of
consumers or suppliers for a subject in one operation.
When registering, a type description should be provided
to the service and type checking is done between the

2 In the current Alcatel implementation, sets of types are not yet

implemented. Only one data type can be associated to a subject for
generic notifications, and only one operation description can be
associated to a subject for typed notifications.

provided description and the type description which has
been registered with the subject.

Initially when this design has been done, it was planned
that when registering for a subject an object was
registering for all its sub-subjects. This is complex to
implement. A possible implementation would consist in
having a channel for each sub-subject and using federation
for reproducing the hierarchy of subjects. A sub-subject
channel being a producer of its higher level subject
channel. This is an interesting feature for providing a
better API to service subscription and is will be
considered for future versions of the service.

All other proposals define a concept similar to a
subject. [NEC], [DSTC/Nortel] and [GMD] also specify
that a type description of the subject should be stored.
Only [DSTC/Nortel] specifies that subjects could be
organised hierarchically, but this is not further specified.

The notion of subject provides a powerful API to the
service and is possible because the service architecture
offers a centralised manager able to cope with general
management information.

������ 3UBSCRIBER�DESCRIPTIONS
In the push (respectively pull) communication model

consumer (respectively supplier) objects should provide
an object reference for allowing the channel to make
invocations.

References are not guaranteed to stay unchanged when
for example a fault occurs. Consequently a logical
identifier is needed to identify the subscriber object
independently of the object location and the object
instance.

For instance after a client-side failure a new subscriber
object can be instanciated which will continue the work of
the previous instance.

Identification is also needed for security reasons. It
should be possible to restrict notification delivery to a list
of consumers. It should also be possible to restrict the
acceptance of notifications depending on which supplier
emitted the notification.

Identification can also allow the service manager to
register configurations. For example a consumer could
register a filter description that could be used for each
instance of this consumer. This is also used for the
suspend/resume mode (see Section 4.1.4).

Alcatel’s Notification Service defines subscription
identifiers as arbitrary user-defined strings which are used
for all of these purposes except security which is not
implemented.

In [NEC], [DSTC/Nortel] and in [TID/HP] a subscriber
is only identified by its object reference. In [GMD] unique
names are used to identify suppliers and consumers.

������ 3UBSCRIPTION�INFORMATION�PROPAGATION
When a subscriber registers for a kind of notification,

the information corresponding to this subscription can be
propagated through the channel.

When a supplier registers, a description of its
subscription can be sent to the consumers. This is called
« OFFERING�{ in [DSTC/Nortel]. This « offering�{ concept
implies that a consumer has to provide the necessary
interface to support this concept to the service.

When a consumer registers, its filter is passed to the
channel. This filter could be moved as near as possible to
the supplier location in order to reduce the network traffic
by filtering at the source. In fact to be efficient a filter
should be built at each level of the transmission chain to
gather the requirement of all the consumers concerned by
this level. [DSTC/Nortel] calls this « QUENCHING ». At the
supplier side this requires an interface accepting filters
and the possibility to interpret filters. The possibility of
updating filters dynamically and incrementally is
necessary.

Alcatel’s service provides a limited implementation of
quenching in the case of channel federation (see Section
4.2). Offers propagation could be replaced by the
manager interface allowing to get information on subjects.
This limited implementation avoids an additional interface
for the suppliers or consumers.

[TID/HP] and [GMD] do not include subscription
information propagation. [DTSC/Nortel] supports both
« quenching » and « offer » concepts. [NEC] only
mentions the possibility to propagate filters towards the
event source, but does not further elaborate on how this
should be done.

������ 3USPEND��RESUME�MODE
To simplify the service use, a suspend mode is

desirable. The suspend mode allows a consumer to stop
receiving notifications for a while. When entering the
suspend mode, all the notifications queued or transiting by
the channel are lost for the consumer. When the consumer
resumes the reception of notifications, it does not need to
subscribe to the subjects or provide filters again.

Alcatel’s prototype, [DSTC/Nortel], [TID/HP] and
[NEC] are all providing these modes.

������ #ONCLUSION�ON�SUBSCRIPTION
Hierarchical subjects, subscriber identifiers,

incremental filtering, and suspend/resume mode were not
present in Alcatel’s V1 prototype. The features in this list
corresponding to a better API have been requested by the
users for the V2.

Subscriber identifiers have been added to support fault-
tolerance, quality of service and security.

The concept of subjects results in a simple registration
interface. This combined with the fact that the notification

channel interface is defined by the user implies an easy
use of the service.

4.2 Federation

In case of a lot of recipients and/or emitters or
notifications, a notification channel might get congested.
A solution for this problem is loadbalancing, the division
of the load over multiple channels. Federation is a means
to perform this loadbalancing. Federation consists in
connecting two channels, with one channel acting as a
supplier for the other channel which in its turn is acting as
a consumer of the first channel. Federated channels can
share the load for better performance and scalability,
while maintaining the initial distribution.

 Figure 5 presents an example of channel federation. In
Alcatel’s prototype, two ways to federate channels
through the notification server interface have been
defined: the « like a supplier » federation, where a channel
is asked to register like a supplier to another channel, and
the « like a consumer » federation where a channel is
asked to register like a consumer channel. The difference
between these two is in the filtering. For the first kind of
federation, the channel only forwards notifications. For
the second kind of federation a filter must be specified,
that will be applied to all notifications passing from one
channel to the other. This second kind of federation
allows specialised channels which offer more fined
grained subjects, and reduce the notification load.

If several channels share a common part in their filter,
this one can be factorized and passed on to the supplier
channel. Such a filter factoring policy allows to reduce the
load of the second channel when there is a large amount
of notifications or suppliers. This corresponds to the
[DSTC/Nortel] quenching mechanism.

Federation also allows to have one Notification
Services per network administrative domain in order to
structure the notification space. Federation can be intra- or
inter- domain. An example of inter-domain federation is
given in Figure 5. In Figure 5 we can define two network
administrative domains : A (Sa, Ca) and B (Sa, Cb),. The
first channel belongs to the notification service A while
the second belongs to B. The federation allows a
notification emitted in the A domain to be propagated to
the B domain.

Intra-domain federations generally aim at filter
factorizing or decreasing the address space and site load.
For example all high priority notifications of a subject
could be propagated to a separate channel, whose subject
could be "emergency".

The Alcatel prototype does not offer channel
federation, but instead it offers subject federation through
the notification manager interface. In contrast with
[DSTC/Nortel], [TID/HP] and [NEC], the federation is
not performed directly on the channel, but on the
manager. This allows to federate subject easily without
having to know notification channel instances or their
reference.

In the current implementation, subject federation is
done at the initiative of a service administrator. Further
study needs to be done to federate channels automatically
since the policy for federation depends on the service use.

Federation is essential for scalability and performance
in telecommunication applications to reduce the network
traffic. The fine-tuning of federation at subject-level
instead of service-level allows to customise the service to
a clients needs.

4.3 Fault-tolerance

In TMN, notifications are used to propagate
information about failures, so the Notification Service is a
building block for reliability in the system. A similar use
of the Notification Service by TINA can be expected. A
mechanism used for guaranteeing reliability should
provide at least the same level of reliability as the
expected system reliability. Consequently, the Notification
Service should provide different levels of reliability
according to the needs of its users.

The different levels of reliability are defined by the
kind of fault or malfunctioning behaviours which are
considered: it can be the overload of a consumer or a
channel3 which is not able to accept the notification in
time, a communication failure between the channel and its
subscribers, a site fault (the memory is lost) that can either
results in a channel or a subscriber crash or a disk failure
resulting in the loss of data stored on a disk.

3 The case of channel overload is not treated here since in the case
of telecommunication some specialised solution can be studied and will
be developed in section 4.4.4.

CbSa

Sa

Ca

Cb

Figure 5: Channel federation example

To solve communication failures, overload of a
consumer and consumer crash, notification logging can be
used to discharge the channel and to re-inject the
notifications later on. An additional mechanism on the
supplier side is necessary to resist channel crash to change
the old channel reference by the reference of the new
channel. With the pull communication model, this
mechanism will also be necessary on the consumer side.
To solve a channel crash, additional information should
be logged to remember the channel state: the list of
consumers in the push model, the list of suppliers in the
pull model, and the list of filters. Some other information
can be kept by the service, e.g. the description of the
notification types in the case of Alcatel’s Notification
Service and the federation configuration. This information
should be logged to resist site failure (manager crash in
Alcatel’s case). Finally logged data should be replicated
to resist disk failures. The number and place of replica
defines the degree of reliability and availability.

Logging allows to save the necessary data for recovery,
but a mechanism should be added to do the recovery.
Besides ad-hoc solutions for simple recovery situations,
transactions can be considered to automate complex
recovery. These solutions can be a part of the quality of
service modes.

The reliability of the system depends on that of the
logging mechanism. The use of a customisable logging
service [Ruffin 92] can provide an adapted quality of
service: Log replication provides high reliability, log
distribution determines availability, and high level logging
techniques provide low overhead.

 The Alcatel Notification Service provides three levels
of fault tolerance: the logging of notifications, the logging
of channel states (list of subscribers, filters and
notification logging) and manager state information
logging. Control operations are provided to select these
features and fine-tune them. Notification logging or
channel state logging can be switched on at channel level
or at service level (for each channel managed by the
service). This fine-tuning allows to take into account the
quality of service customised to the user needs. The
quality of service can be further fine-tuned by using an
appropriate transactional model. The use of transaction
and logging services is considered for future versions of
the service.

[TID/HP] and [DSTC/Nortel] do not define features for
fault-tolerance. [GMD] only specifies the logging of
notifications. [NEC] defines logging of notifications,
logging of the channel state, logging of the global service
configuration state and the use of the CORBA Transaction
Service.

Fault-tolerance of the service is important for fault-
tolerant applications and thus for telecommunications.
Being able to choose the level of fault-tolerance (e.g. at

channel-level, at service-level) allows to fulfil different
applications needs.

4.4 Quality of Service

 In telecommunications, robustness and performance
are of high importance. The requirements on applications,
especially management impose the need for a flexible
Quality of Service. The Notification Service must for
example be able to face a sudden rise of the notification
traffic or a more structural overload. To cope with those
critical situations, the Notification Service provides the
following features: ageing, priority, delivery guarantee
and a policy to resist event overload.

������ !GEING
Like for messages in traditional communication

protocols, a limit of duration can be assigned to
notifications while transiting between suppliers and
consumers. A notification which has not been transmitted
to consumers after this duration is discarded.

In case of federation, this mechanism (called ageing)
can be used in order to avoid cycles. If some channels
have been federated in a cycle, a notification can loop
indefinitely. With this mechanism the notification will be
eventually discarded.

Ageing prevents the buffers to get overloaded, but it
can discard relevant notifications. This problem can be
remedied by combining this feature with other QoS
features.

������ 0RIORITY
In the generic notification header, a priority field is

defined in order to cope with local overload.
An option to be set at the notification manager allows

highest priority notifications to be filtered and
disseminated before lower priority notifications in the
same channel. This feature enables consumers to receive
the most relevant notifications as soon as possible.

This priority policy is finer than the basic mechanism
where a priority level is assigned to each channel.

������ $ELIVERY�GUARANTEE
Automatic deletion of notifications can occur when

ageing and priority are combined during local overload ;
lower priority notifications are waiting for higher priority
notifications to be disseminated and risk to be discarded if
the channel does not filter them quick enough. The result
is an uncontrolled loss of notifications that can create an
inconsistency in the system.

To prevent this undesired deletion of notifications an
option that guarantees the delivery of a notification can be
defined. This option can be set at the notification manager
interface, in order to keep lowest priority notifications that

can not be disseminated. These low priority notifications
can then be send when the channel is not overloaded any
more.

Ageing, priority and guarantee delivery are basic QoS
features. They are proposed in [GMD], [TID/HP] and
[NEC] too.

������ 0OLICY�TO�RESIST�EVENT�OVERLOAD
Notifications can be used to propagate error states.

Those notifications must be treated in order to avoid a
failure of the system. If the error is not processed quickly
enough, it might lead to a cascade of errors, leading to a
burst of events and an overload of the system. The
Notification Service must be able to resist to such
situations. Two directions can be investigated to prevent
an overload of the system: preventive and curative.

The preventive direction consists in defining a
mechanism that minimise the situation where a burst
occurs. For example, the use of priorities allows to specify
that error events must be processed before informative
events. It will result in a smaller response time to errors.
The filtering is also one mechanism that reduces the load
of the system: events transmitted are only those accepted
by managers.

But there is some cases where the flow of events
increases and the Notification Service has no control over
it. In order to resist to such situations, the service must
have a mechanism to reduce the event propagation. A
simple policy is to discard events with the lowest
priorities. This can be done automatically when the
notification lifetime is set: the higher priority notification
are forwarded, meanwhile the lower priority ones get old
enough in the queue to die. Another possibility is to block
suppliers until the load reduces.

But more complex policies can be chosen, that both
keep all events, and allow suppliers to continue their
work. For example, the overloaded Notification Service
could send an exception to suppliers trying to send new
notifications, after having registered them in a list of
unsatisfied clients. Then, when the load is getting down,
the service would advertise its availability to its
unsatisfied clients. These suppliers would consequently
resend the notification, if it is still meaningful.

Another strategy can be the SHADOW� CHANNELS.
Classically, a subject in one notification domain is
associated to one channel. But when the notification
manager detects an overwhelming traffic, the critical
subject could have multiple channels in the network
thanks to a notification factory dedicated to create shadow
channels. In the push model, a shadow channel will
receive the same configuration than the classical channel
concerning the consumers. Its reference will be returned
in an exception « new channel created, retry on this one »
by the normal channel to the suppliers it can not cope

with. When the load slowdown , the notification manager
warns suppliers to return to the old reference. This can be
done with the same exception mechanism. For the pull
model, supplier must be replaced by consumer and vice
versa. The load of the traffic will not decrease on the
network, but the load will be shared by the normal
channel, and its shadow counterpart(s).

In the same way, the COS trader could be coupled with
the notification service to register subjects, and associated
channels, in order to offer an alternative to the
management access of the notification service.

It appears during the Alcatel’s Notification Service V2
achievement that service advanced functions could be
eased if the notification suppliers and consumers could
offer an interface allowing some management, for
example the shadow mechanism could be easily
implemented with it. The supplier/consumer could be
warned by the notification service state and even could
receive instructions. Nevertheless, these additional
interface must stay optional, in order to allows flexibility
for notification service users.

5. Conclusion and future work

A Notification Service provides asynchronous
multicast between CORBA objects. Compared to an Event
Service, the notification service major additions are the
support for filtering and some quality of service modes.
Filtering allows to decrease the traffic which is an
essential point for telecommunication applications and
consequently for TINA services. Performance, quality of
service and fault-tolerance are major considerations for a
real-time system and thus for telecommunication software.

5.1 Features for a TINA Notification Service

We believe that the following service characteristics
have to be considered for the design of a TINA
notification Service:

'ENERIC� AND� TYPED� NOTIFICATION. Generic and typed
notifications provide the service user with a trade-off
between a low-level mechanism with good performances
and a higher level mechanism less error prone. In the
second case, the cost in performance can be reduced by
the use of predefined typed notifications.

&ILTERING. Filtering should be at the channel level for
performance and scalability purposes. It should be
dynamic and incremental in order to provide the
quenching mechanism.

3UBSCRIPTION. A high level API for subscription is not
essential but it is important for an easy use of the service.
The concept of subjects organised hierarchically is
promising and needs to be developed and assessed.

&EDERATION. Federation at subject level is essential for
performance and scalability, and supports the network
administrative domain concept.

&AULT
TOLERANCE. Fault-tolerance is ubiquitous in
industrial telecommunication applications. A customisable
fault-tolerant Notification Service should be a building
block for higher level fault-tolerance.

1UALITY�OF�SERVICE. Quality of service is a basic feature
in real-time systems and thus in telecommunication
software. We still need to investigate which quality of
service features are useful for a notification service
dedicated to telecommunication applications.

.OTIFICATION�MANAGER��A notification manager�which
handles channel instanciation and deletion, notification
description registration, subscription, federation, high
level fault-tolerance and recovery provides to the user a
set of automatic high level functions, simplifying the use
of the service and centralising the service state. The
second advantage of the notification manager stems from
its ability to perform a part of the work, discharging
channel objects of a part of the administration task.
Channel tasks can be more concentrated on their main
task of communication. This is a very valuable feature in
the context of communication.

5.2 Future work

New work begins around Alcatel’s Notification Service
in the context of Vital and ReTINA ACTS projects. In
addition to the completion of the actual features by for
instance integrating the Notification Service with a
logging service more advanced studies should be done.

As a service for reliability, the reaction of the service in
case of critical situations such as the increasing of
notification flow beyond the possibilities of the service
need to be evaluated in the context of real telecom
applications in order to refine the adequate solutions
according to application’s needs.

A second research direction for the Notification
Service is its interfacing with transaction services and
models. According to the integration with particular
transaction models such as the open nested model or the
queuing model different profiles of the Notification
Services can be provided to the users according to
different quality of service requirement for fault-tolerance.

The next step for telecommunication application is a
real-time notification service integrating time constraints
for real-time needs in communication.

6. References

[NEC et al. 97] NEC, BEA, Expersoft, Fujitsu. IBM. ICL,
IONA, Oracle, TIBCO, Visigenic: « Notification

Service Submission », OMG TC Document
telecom/97-06-01, June 3rd, 1997.

[DSTC and Nortel 97] DSTC, Nortel Technology:
« Notification Service ». OMG document
telecom/97-05-02, June 2nd, 1997.

[GMD 97] GMD Fokus : « OMG Notification Service » OMG
TC document 97.x.x June 3rd, 1997.

[OMG 94] The Object Management Group: « Common
Object Services Specification ». V I 1.0.
Framingham, MA, 1994.

[OMG RFP] OMG document: telecom/97-01-03.
[ReTINA] http://www.chorus.com/Research/retina.html
[Ruffin 92] Michel Ruffin: « KitLog: a Generic Logging

Service ». Proceedings of the 11th Symposium on
Reliable Distributed Systems, Houston, TX
(USA), pages 139-146. October 5-7, 1992.

[TID and HP 97] TID, HP: « Joint submission to Notification
Service RFP » Edition 2.0, June 1997.

[TMN] ITU-T, M3010, Principles for a
Telecommunications management network

[VITAL] http://www.mari.co.uk/vital.
[X720] CCITT X720: « Structure of management

information-Management information model ».
[X721] CCITT X72: « Structure of management

information-Definition of management
information ».

[X733] CCITT X73: « System management -Alarm
reporting function ».

[X734] CCITT X734: « System management - Event
report management function ».

